
Configuring a Large-Scale GALS System

M.M. Khan*, J. Navaridas†, L.A. Plana*, M. Luján*, J.V Woods*, J. Miguel-Alonso† and S.B. Furber*

*School of Computer Science, The University of Manchester, UK

†University of The Basque Country, Spain

email: khanm@cs.man.ac.uk

Abstract—The SpiNNaker massively parallel GALS system
has been designed to support large-scale simulations of bio-
logically inspired neural networks in real-time. The system is
built around the chip-multiprocessor (CMP) technology using
low-power ARM processors with an asynchronous network-on-
chip (NoC) to support high performance parallel distributed
processing. A novel asynchronous event-driven boot-up process
efficiently configures the SpiNNaker chips and loads the ap-
plication using a high-speed flood-fill mechanism to a system
consisting of up to a million embedded processors in a robust
and scalable way.

I. INTRODUCTION

SpiNNaker is an Application Specific Integrated Circuit

(ASIC) architecture designed to provide a hardware platform

for large-scale spiking neurons simulations in real-time [1].

A full-scale system contains up to a million processors

organized in small CMPs connected by an asynchronous

packet switching network (Figure 1). Each processing core

contains a local memory of 100KB to enable simulating

up to 1000 simple spiking neurons. Each processor is an

independently functional unit with dedicated resources such

as Timer, Interrupt Controller, Communication Controller

and DMA Controller; all synchronised to an AHB bus.

The processors share chip-level resources such as System

RAM, Boot ROM, System Controller etc. using an efficient

asynchronous NoC based on CHAIN [2] architecture as

shown in Figure 2. While 1000 neurons can be simulated

with the help of local memory in each processor, the synaptic

information related to these neurons (1000-10000 synapses

per neuron [3]) requires much more memory (minimum

4Bx1000(synapses)x1000(neurons)x20(processors)=80MB)

per chip. To meet this requirement an off-chip SDRAM of

up to 1GB has been provided with each chip. A specially

designed DMA with each processor uses the system NoC’s

efficient throughput (1Gb/sec) to provide a localized view

of this data to the neurons in each processor [4]. The

performance we achieve with this interconnect at a much

reduced energy consumption was never possible with most

synchronous bus architectures.

The neurons communicate with each other by sending

spikes. The spike communication in the SpiNNaker system

has been supported with the help of small packets travelling

over yet another fast asynchronous network called “Commu-

nication NoC” that connects all the processing cores to a

specially designed on-chip multicast router in each chip [5].

The Communication Controller with each processing core

provides a bridge between synchronous AHB communication

Fig. 1. Multi-chip SpiNNaker CMP.

and packet-switching asynchronous Communication NoC.

The router forms a chip-level subnet of the neurons in its

20 processing cores, besides providing a gateway to their

communication with the neurons on other chips. The router

extends this chip-level subnet of Communication NoC to six

neighbouring chips with the help of deadlock free TX/RX

interfaces. The global communication network wraps itself

around by connecting all the chips in the form of a toroidal

mesh as shown in Figure 1, and provides a throughput of

6Gb/s per node [5]. The router is capable of multicasting

a packet to any subset of its six neighbouring chips and

20 local processors. Along with the spike carrying multi-

cast packets, the router also supports nearest-neighbour(NN)

and point-to-point (P2P) packets that are used for diagnos-

tics/configuration and system-level management purposes.

The system is connected to a PC called the ‘Host’ with the

help of the Ethernet connection on the CMP.

The underlying objective is a robust and high-performance

architecture at low power consumption [6]. To achieve this

aim, SpiNNaker uses low power ARM968 processors and

asynchronous NoC along with a power-efficient event-driven

application model. The processing cores remain in sleep

mode to save energy, woken up by an event such as arrival

of a packet or the time to update the neurons’ state. The

configuration process, uses the same event-driven model to

load the application from the Host into the SpiNNaker system

2Gb/s

Comms NoC
(Input) (Output)

Comms NoC

1Gb/s 8Gb/s4Gb/s

Proc3...

PL340 SDRAM I/F

1GB DDR SDRAM

2of7

Enc

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Dec

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

2of7

Enc

CpuClk CpuClk CpuClk CpuClk CpuClk CpuClk

ROM

System System

Ctlr
Ethernet

Ether MII

System

RAM

Proc0 Proc1 Proc2 ProcN−1ProcN−2 ProcN

System NoC

MemClk

JTAG

Debug

10MHzTestReset
IRQ

Router

control

Decode

Packet Routing Output

Engine Select

I/O Port

AXI Slave AXI Slave AXI SlaveAXI SlaveAXI Slave

Packet Router

AXI Master AXI MasterAXI MasterAXI MasterAXI MasterAXI Master

CommCtlr CommCtlrCommCtlr CommCtlr CommCtlr

AXI Slave

CommCtlr

Input

Links

Output

Links

AXI Master

RtrClk

PLL

Clock

MemClk
RtrClk
CpuClk

Fig. 2. SpiNNaker CMP.

using the Ethernet link and the Communication Network. The

process provides a scalable and fault-tolerant way to load the

application in the whole system very efficiently.

II. ASYNCHRONOUS EVENT-DRIVEN MODEL

SpiNNaker uses an asynchronous event-driven model to

run the application similar to a real-time embedded applica-

tion [7]. As per this model, all the processors in the SpiN-

Naker CMP remain in sleep-mode until an event, such as the

arrival of a packet, arrival of a frame, a DMA completion

or a timer notification after a certain time interval, wakes

them up. These events are provided to the processors as

hardware interrupts by the interrupt controller with each pro-

cessing core. The SpiNNaker uses an ARM Vector Interrupt

Controller which can be configured for interrupt priorities.

The Interrupt Controller provides the address of an Interrupt

Service Routine (ISR) to handle the interrupt for quick

branching to the relevant code. The SpiNNaker address space

has been distributed in such a way that the software can read

the Vector Address Register in the Vector Interrupt Controller

in only one CPU cycle. We assign the highest priority to

the frame arrival event (on the chips connected to the Host),

followed by packet-received event, DMA-completion and the

Timer’s interrupt, however, it can be re-configured by the

user with the help of the application. The event-driven real-

time application model has been implemented with the help

of ISRs. As part of configuration process, the ISR for a

frame-arrival event requests a DMA read operation to bring

in the block of data from the Ethernet interface. On DMA-

completion event, the state is set for flood-filling the data to

the other chips. The next timer interrupt activates a function

to start sending the data to the neighbouring chips using NN

packets. The packet-received event on neighbouring chips

wakes the processor to store the data and pass it onward to

other neighbours. The end of every ISR forces the processor

to the sleep mode to conserve power as shown in Figure 3.

Fig. 3. Asynchronous Event-Driven Model.

The process has been explained in later sections. The same

model, with different function calls from the ISRs, is used

for running the neural application [8], once the configuration

process is over.

III. CONFIGURATION PROCESS

The SpiNNaker has been designed as a general purpose

neural network simulator [9]. To achieve this objective, a

bare minimum code is loaded into the chips’ Boot ROM, just

to enable basic power-on self-test and default initialization

of chip devices. In order to run any neural simulation model

and for better fault-tolerance, the system is configured at the

run-time and the application is loaded to each CMP from the

Host. The configuration process is divided in two phases. In

the first phase, the processors run the Boot ROM code in

batch mode to test and initialise processing cores’ peripherals

independently. One out of the 20 on-chip processors is

chosen as the ‘monitor’ processor with the help of the System

NoC arbiter. At this stage all processors, except the monitor

processor, go to sleep mode. The monitor processor, which

is now managing the chip, switches the processors’ clock to

the actual (200MHz) frequency, performs detailed chip-level

device tests and initializes them to default setting. On the

chips connected to the Host through the Ethernet link, the

Ethernet connection is configured to establish communication

with the Host to start receiving frames. As part of chip-

level fault-tolerance mechanism, a chip-level recovery is

performed by the monitor processor to restore any faulty

chip components using embedded recovery routines. After

this the monitor processor also goes to sleep putting the chip

in listening mode waiting for an interrupt.

IV. FLOOD-FILL MECHANISM

In the second phase, the configuration process runs as

an asynchronous event-driven application under the control

of the Interrupt Controller. At the chip(s) connected to the

Host, the Ethernet Interface generates a ‘frame-received’

event as an interrupt to the monitor processor. The monitor

Fig. 4. Selective Forward Flood-fill.

processor stores the data into its memory and transmits it to

the neighbouring chips as 32-bit words using NN packets. On

all chips, the monitor processor’s Communication Controller

generates a ‘packet-received’ event when a message arrives

from a neighbouring chip. Each interrupt triggers a different

ISR to run the code for the related configuration job before

putting the monitor processor to sleep again. These two

different event-driven processes use two separate protocols.

The Monitor on the Host-connected chip translates between

the two protocols, converting the Ethernet frames it gets from

the Host to packet-based messages, then issuing them either

as broadcast or chip-specific NN packets.

At this stage a dead chip in the system is diagnosed by

its neighbours and one of the neighbouring chip tries to

reactivate it using a diagnostic and a fault-recovery process.

This “neighbour’s diagnostic” mechanism also runs as an

event-driven application with the help of ISRs using NN

packets. By using this process a neighbour can inject the

boot up code in the System RAM of a chip, remaps the Boot

ROM’s address to the System RAM and resets the chip’s

processors to bring it back to life. The Host nominates a

reference chip to be the ‘origin chip’ with address (0, 0) and

the chips assign themselves a logical address in 2D (x, y)

plane with reference to the origin chip. Each chip configures

its P2P table based on the logical location of the chips to

perform P2P routing. This can later be reconfigured by the

Host according to the system-level configuration. Each chip

reports its state to the origin chip using P2P packets. The

origin chip accumulates these states and reports the result

to the Host. The Host configures the neural mapping and

connectivity as per the user’s application model according

to the chips’ state and loads the application to the chips.

The Host configures the routing tables for each chip as

per the mapping and connectivity defined by the underlying

neural network being simulated. The Host instructs the

monitor processor to activate the application processors to

Fig. 5. Flood-Fill Performance Analysis.

load the application to their local memories and start running

the application. The Host interacts with the system either

for stimuli and responses as part of the application or to

interrogate the state of the hardware or application.

An efficient and fault-tolerant mechanism has been devised

to load the application and data into the chips [10]. During

the inter-chip flood-fill process the chips use NN packets to

broadcast (or multicast) one 32-bit word of data at a time to

their 6 neighbouring chips. Receiving chips store the data

and broadcast it to their neighbours onward. A pipelined

flow of data thus flows from the origin chip connected to

the Host to the whole system. Figure 4 shows one type

of multicast mechanisms for flood-filling the data in the

SpiNNaker system. As part of the flood-fill mechanism the

Host loads the application and data as a data block at

a time using Ethernet frames. The origin chip performs

a checksum test on the block and transmits it forward if

correctly received. The physical address of the word is sent

into the routing key of the NN Packet to help serialization and

removing duplication. The last NN packet of the data block

contains a checksum word. The receiving chips load the data

to the specified location in the memory address space. The

process ensures that each chip receives every transmitted

word at least twice during the flood-fill process, ensuring

data delivery to each chip in case of blocked links. At the

end of the flood-fill process, the Host requests the state of

each chip along with blocks received. At this stage, the chips

can request missing blocks from each other or the Host.

V. EVALUATION WORK

The boot-up process has been implemented for the

ARM968E-S and tested on an instruction- and cycle-accurate

SystemC model for single- and multi-chip system-level

model designed with the help of ARM SoC Designer [11].

Phase I of the process i.e. the chip-level configuration takes

129706 CPU cycles (200MHz in actual chip), and is inde-

pendent of the size of the system and number of processors

in each chip as each processor loads the code into its local

memory and runs independently. As the SoC Designer does

not support real-time delays, the communication delay for

the asynchronous part of the system acquired from its HDL

simulation was simulated in multiples of CPU cycles i.e. 15ns

as 3 CPU cycles at 5ns clock speed. As a large-scale system

could not be simulated with this simulation due to underlying

PC’s resources limitation, the flood-fill process was simulated

with the help of yet another high-level simulation based on

the timing acquired from SoC Designer simulation for a 9

chips SpiNNaker system-level model. For this purpose we

implemented a high-level event-driven simulator that allows

the evaluation of different algorithms for flood-fill process.

The system model is utterly simplistic but provides a way to

scale up to the largest configuration of the SpiNNaker system

i.e. with 64K chips. In addition it supports evaluation of the

application loading process under scenarios with link failures

etc.

In this work we have implemented the flood-fill process

by broadcasting NN packet to all neighbours (bcast), sending

separate NN packets to the 2 or 3 neighbours in the forward

directions (2msg and 3msg), or sending separate NN packets

to all neighbours except the one the packet is received from

(5msg). We have also tested different sizes of the SpiNNaker

network, ranging from 32x32 to 256x256 to load varying

sizes of data. The results in Figure 5 show that the application

loading time is almost independent of the system size. This

is because of the perfect pipelining of the packets in forward

direction. Apparently, the only factors affecting the perfor-

mance are the size of the data and the flood-fill mechanism

i.e. broadcast or separate NN packets to the neighbours. It

is obvious that the fewer packets the router has to send the

better performance in terms of time is obtained. In the case of

broadcast mechanism, though the processor sends one packet

that is broadcast in one router cycle to all the neighbours,

contention at consumption reduces the performance. From

the results, the best performance mechanism is to send

individual packets to only two neighbours in the forward

direction (2msg), however, this policy is not fault-tolerant

as a blocked link in one direction may deny all the chips

in that direction from that packet. The mechanisms with

broadcast or with sending packets to at least three neighbours

in the forward direction are more robust as these guarantee

duplicate packets to the recipient chips.

VI. CONCLUSIONS

The SpiNNaker architecture, using real-time embedded

application model over low-power ARM968 processors and

asynchronous NoC, provides an energy-efficient yet powerful

platform to enable large-scale spiking neural simulations.

To keep the architecture universally suitable for all kinds

of neural modelling, the system can be configured for the

neural application and neural connectivity at the run-time.

A novel configuration process has been devised as part of

this research to meet this aim. With the help of this process,

we can load the neural application and relevant data besides

configuring the system to support the neural connectivity as

per application setting. The simulation results show that the

process is very efficient, scalable and fault-tolerant to support

a novel large-scale massively parallel GALS architecture. We

are currently working on the user interface at the Host and

to provide a library of functions to enable configuring the

application by abstracting the details of the SpiNNaker ar-

chitecture from the user. The interface, once completed, will

provide an automated process of configuring the application

at the Host before loading into the SpiNNaker system to

optimally utilise the design features of the SpiNNaker ASIC

architecture.

ACKNOWLEDGEMENTS

The SpiNNaker project is supported by the Engineering

and Physical Sciences Research Council, partly through the

Advanced Processor Technologies Portfolio Partnership at

the University of Manchester, and also by ARM and Silistix.

Steve Furber holds a Royal Society-Wolfson Research Merit

Award. J. Navaridas is supported by a doctoral grant of the

UPV/EHU and by the Ministry of Education and Science

(Spain), grant TIN2007-68023-C02-02, and by grant IT-242-

07 from the Basque Government.

REFERENCES

[1] S. Furber, S. Temple, and A. Brown, “On-chip and Inter-chip Networks
for Modelling Large-Scale Neural Systems,” in Proc. International
Symposium on Circuits and Systems, ISCAS-2006, Kos, Greece, May
2006.

[2] L. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y. Shi, and J. Wu, “An
On-Chip and Inter-Chip Communications Network for the Spinnaker
Massively-Parallel Neural Net Simulator,” in Proc. Second ACM/IEEE
International Symposium on Networks-on-Chip (NoCS 2008), 2008,
pp. 215 – 216.

[3] R. F. Thomspon, “The Brain - A Neuroscience Primer”, 2nd ed., G. L.
R.C. Atkinson and R. Thomspon, Eds. New York: W.H.Freeman and
Company, Worth Publisher, 1997.

[4] A. Rast, S. Yang, M. Khan, and S. Furber, “Virtual Synaptic Intercon-
nect Using an Asynchronous Network-on-Chip,” in Proc. 2008 Int’l
Joint Conf. on Neural Networks (IJCNN2008), 2008.

[5] L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang,
“A GALS Infrastructure for a Massively Parallel Multiprocessor,”
IEEE Design & Test of Computers, vol. 24, no. 5, pp. 454–463, Sept.-
Oct. 2007.

[6] S. Furber, S. Temple, and A. Brown, “High-Performance Computing
for Systems of Spiking Neurons,” in AISB’06 workshop on GC5:
Architecture of Brain and Mind, vol. 2, Bristol, April 2006, pp. 29–36.

[7] H. Kopetz, “Real-Time Systems: Design Principles for Distributed
Embedded Applications”. Kluwer Academic Publishers, 1997.

[8] X. Jin, S. Furber, and J. Woods, “Efficient Modelling of Spiking Neural
Networks on a Scalable Chip Multiprocessor,” in Proc. 2008 Int’l Joint
Conf. on Neural Networks (IJCNN2008), 2008.

[9] S. Furber and S. Temple, “Neural Systems Engineering,” Journal of
The Royal Society Interface, vol. 4, no. 13, pp. 1–14, April 2006.

[10] M. Khan, J. Navaridas, X. Jin, L. Plana, J. Woods, and S. Furber,
“Real-Time Application Support for a Novel SoC Architecture,” 2008,
to appear in Proc. of 4

th UK Embedded Forum Southampton UK,
September 2008.

[11] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and
S. Furber, “Spinnaker: Mapping Neural Networks onto a Massively-
Parallel Chip Multiprocessor,” in Proc. 2008 Int’l Joint Conf. on
Neural Networks (IJCNN2008), 2008.

